Package: accSDA 1.1.3

accSDA: Accelerated Sparse Discriminant Analysis

Implementation of sparse linear discriminant analysis, which is a supervised classification method for multiple classes. Various novel optimization approaches to this problem are implemented including alternating direction method of multipliers ('ADMM'), proximal gradient (PG) and accelerated proximal gradient ('APG') (See Atkins 'et al'. <arxiv:1705.07194>). Functions for performing cross validation are also supplied along with basic prediction and plotting functions. Sparse zero variance discriminant analysis ('SZVD') is also included in the package (See Ames and Hong, <arxiv:1401.5492>). See the 'github' wiki for a more extended description.

Authors:Gudmundur Einarsson [aut, cre, trl], Line Clemmensen [aut, ths], Brendan Ames [aut], Summer Atkins [aut]

accSDA_1.1.3.tar.gz
accSDA_1.1.3.zip(r-4.5)accSDA_1.1.3.zip(r-4.4)accSDA_1.1.3.zip(r-4.3)
accSDA_1.1.3.tgz(r-4.5-any)accSDA_1.1.3.tgz(r-4.4-any)accSDA_1.1.3.tgz(r-4.3-any)
accSDA_1.1.3.tar.gz(r-4.5-noble)accSDA_1.1.3.tar.gz(r-4.4-noble)
accSDA_1.1.3.tgz(r-4.4-emscripten)accSDA_1.1.3.tgz(r-4.3-emscripten)
accSDA.pdf |accSDA.html
accSDA/json (API)
NEWS

# Install 'accSDA' in R:
install.packages('accSDA', repos = c('https://gumeo.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/gumeo/accsda/issues

On CRAN:

Conda:

3.40 score 5 stars 10 scripts 368 downloads 10 exports 29 dependencies

Last updated 1 years agofrom:b58116b0b4. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 24 2025
R-4.5-winOKMar 24 2025
R-4.5-macOKMar 24 2025
R-4.5-linuxOKMar 24 2025
R-4.4-winOKMar 24 2025
R-4.4-macOKMar 24 2025
R-4.4-linuxOKMar 24 2025
R-4.3-winOKMar 24 2025
R-4.3-macOKMar 24 2025

Exports:ASDAASDABarPlotgenDatnormalizenormalizetestordASDASZVDSZVD_kFold_cvSZVDcvZVD

Dependencies:clicolorspacefansifarverggplot2gluegridExtragtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr