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accSDA accSDA: A package for performing sparse discriminant analysis in
various ways.

Description

The accSDA package provides functions to perform sparse discriminant analysis using a selection
of three optimization methods, proximal gradient (PG), accelerated proximal gradient (APG) and
alternating direction method of multipliers (ADMM). The package is intended to extend the avail-
able tools to perform sparse discriminant analysis in R. The three methods can be called from the
function ASDA. Cross validation is also implemented for the L1 regularization parameter. Functions
for doing predictions, summary, printing and simple plotting are also provided. The sparse discrim-
inant functions perform lda on the projected data by default, using the lda function in the MASS
package. The functions return an object of the same class as the name of the function and provide
the lda solution, along with the projected data, thus other kinds of classification algorithms can be
employed on the projected data.

ASDA Accelerated Sparse Discriminant Analysis

Description

Applies accelerated proximal gradient algorithm, proximal gradient algorithm or alternating direc-
tion methods of multipliers algorithm to the optimal scoring formulation of sparse discriminant
analysis proposed by Clemmensen et al. 2011.

argmin|(Ytθ −Xtβ)|22 + t|β|1 + λ|β|22
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Usage

ASDA(Xt, ...)

## Default S3 method:
ASDA(
Xt,
Yt,
Om = diag(p),
gam = 0.001,
lam = 1e-06,
q = K - 1,
method = "SDAAP",
control = list(),
...

)

Arguments

Xt n by p data matrix, (can also be a data.frame that can be coerced to a matrix)

... Additional arguments for lda function in package MASS.

Yt n by K matrix of indicator variables (Yij = 1 if i in class j). This will later be
changed to handle factor variables as well. Each observation belongs in a single
class, so for a given row/observation, only one element is 1 and the rest is 0.

Om p by p parameter matrix Omega in generalized elastic net penalty.

gam Regularization parameter for elastic net penalty.

lam Regularization parameter for l1 penalty, must be greater than zero. If cross-
validation is used (CV = TRUE) then this must be a vector of length greater than
one.

q Desired number of discriminant vectors.

method This parameter selects which optimization method to use. It is specified as a
character vector which can be one of the three values

SDAP Proximal gradient algorithm.
SDAAP Accelerated proximal gradient algorithm.
SDAD Alternating directions method of multipliers algorithm.

Note that further parameters are passed to the function in the argument control,
which is a list with named components.

control List of control arguments. See Details.

Details

The control list contains the following entries to further tune the algorithms.

PGsteps Maximum number if inner proximal gradient/ADMM algorithm for finding beta. Default
value is 1000.
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PGtol Stopping tolerance for inner method. If the method is SDAD, then this must be a vector of
two values, absolute (first element) and relative tolerance (second element). Default value is
1e-5 for both absolute and relative tolerances.

maxits Number of iterations to run. Default value is 250.

tol Stopping tolerance. Default value is 1e-3.

mu Penalty parameter for augmented Lagrangian term, must be greater than zero and only needs to
be specified when using method SDAD. Default value is 1.

CV Logical value which is TRUE if cross validation is supposed to be performed. If cross-validation
is performed, then lam should be specified as a vector containing the regularization values to
be tested. Default value is FALSE.

folds Integer determining the number of folds in cross-validation. Not needed if CV is not speci-
fied. Default value is 5.

feat Maximum fraction of nonzero features desired in validation scheme. Not needed if CV is not
specified. Default value is 0.15.

quiet Set to FALSE if status updates are supposed to be printed to the R console. Default value is
TRUE. Note that this triggers a lot of printing to the console.

ordinal Set to TRUE if the labels are ordinal. Only available for methods SDAAP and SDAD.

initTheta Option to set the initial theta vector, by default it is a vector of all ones for the first
theta.

bt Logical indicating whether backtracking should be used, only applies to the Proximal Gradient
based methods. By default, backtracking is not used.

L Initial estimate for Lipshitz constant used for backtracking. Default value is 0.25.

eta Scalar for Lipshitz constant. Default value is 1.25.

rankRed Boolean indicating whether Om is factorized, such that R^t*R=Om, currently only appli-
cable for accelerated proximal gradient.

Value

ASDA returns an object of class "ASDA" including a list with the following named components:

call The matched call.

B p by q matrix of discriminant vectors, i.e. sparse loadings.

Q K by q matrix of scoring vectors, i.e. optimal scores.

varNames Names of the predictors used, i.e. column names of Xt.

origP Number of variables in Xt.

fit Output from function lda on projected data. This is NULL the trivial solution is found, i.e. B is
all zeroes. Use lower values of lam if that is the case.

classes The classes in Yt.

lambda The lambda/lam used, best value found by cross- validation if CV is TRUE.

NULL
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Note

The input matrix Xt should be normalized, i.e. each column corresponding to a variable should
have its mean subtracted and scaled to unit length. The functions normalize and normalizetest
are supplied for this purpose in the package.

See Also

SDAAP, SDAP and SDAD

Examples

set.seed(123)
# Prepare training and test set
train <- c(1:40,51:90,101:140)
Xtrain <- iris[train,1:4]
nX <- normalize(Xtrain)
Xtrain <- nX$Xc
Ytrain <- iris[train,5]
Xtest <- iris[-train,1:4]
Xtest <- normalizetest(Xtest,nX)
Ytest <- iris[-train,5]

# Define parameters for Alternating Direction Method of Multipliers (SDAD)
Om <- diag(4)+0.1*matrix(1,4,4) #elNet coef mat
gam <- 0.0001
lam <- 0.0001
method <- "SDAD"
q <- 2
control <- list(PGsteps = 100,

PGtol = c(1e-5,1e-5),
mu = 1,
maxits = 100,
tol = 1e-3,
quiet = FALSE)

# Run the algorithm
res <- ASDA(Xt = Xtrain,

Yt = Ytrain,
Om = Om,
gam = gam ,
lam = lam,
q = q,
method = method,
control = control)

# Can also just use the defaults, which is Accelerated Proximal Gradient (SDAAP):
resDef <- ASDA(Xtrain,Ytrain)

# Some example on simulated data
# Generate Gaussian data on three classes with plenty of redundant variables

# This example shows the basic steps on how to apply this to data, i.e.:
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# 1) Setup training data
# 2) Normalize
# 3) Train
# 4) Predict
# 5) Plot projected data
# 6) Accuracy on test set

P <- 300 # Number of variables
N <- 50 # Number of samples per class

# Mean for classes, they are zero everywhere except the first 3 coordinates
m1 <- rep(0,P)
m1[1] <- 3

m2 <- rep(0,P)
m2[2] <- 3

m3 <- rep(0,P)
m3[3] <- 3

# Sample dummy data
Xtrain <- rbind(MASS::mvrnorm(n=N,mu = m1, Sigma = diag(P)),

MASS::mvrnorm(n=N,mu = m2, Sigma = diag(P)),
MASS::mvrnorm(n=N,mu = m3, Sigma = diag(P)))

Xtest <- rbind(MASS::mvrnorm(n=N,mu = m1, Sigma = diag(P)),
MASS::mvrnorm(n=N,mu = m2, Sigma = diag(P)),
MASS::mvrnorm(n=N,mu = m3, Sigma = diag(P)))

# Generate the labels
Ytrain <- factor(rep(1:3,each=N))
Ytest <- Ytrain

# Normalize the data
Xt <- accSDA::normalize(Xtrain)
Xtrain <- Xt$Xc # Use the centered and scaled data
Xtest <- accSDA::normalizetest(Xtest,Xt)

# Train the classifier and increase the sparsity parameter from the default
# so we penalize more for non-sparse solutions.
res <- accSDA::ASDA(Xtrain,Ytrain,lam=0.01)

# Plot the projected training data, it is projected to
# 2-dimension because we have 3 classes. The number of discriminant
# vectors is maximum number of classes minus 1.
XtrainProjected <- Xtrain%*%res$beta

plot(XtrainProjected[,1],XtrainProjected[,2],col=Ytrain)

# Predict on the test data
preds <- predict(res, newdata = Xtest)

# Plot projected test data with predicted and correct labels
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XtestProjected <- Xtest%*%res$beta

plot(XtestProjected[,1],XtestProjected[,2],col=Ytest,
main="Projected test data with original labels")

plot(XtestProjected[,1],XtestProjected[,2],col=preds$class,
main="Projected test data with predicted labels")

# Calculate accuracy
sum(preds$class == Ytest)/(3*N) # We have N samples per class, so total 3*N

ASDABarPlot barplot for ASDA objects

Description

This is a function to visualize the discriminant vector from the ASDA method. The plot is con-
structed as a ggplot barplot and the main purpose of it is to visually inspect the sparsity of the
discriminant vectors. The main things to look for are how many parameters are non-zero and if
there is any structure in the ones that are non-zero, but the structure is dependent on the order you
specify your variables. For time-series data, this could mean that a chunk of variables are non-zero
that are close in time, meaning that there is some particular event that is best for discriminating
between the classes that you have.

Usage

ASDABarPlot(asdaObj, numDVs = 1, xlabel, ylabel, getList = FALSE, main, ...)

Arguments

asdaObj Object from the ASDA function.

numDVs Number of discriminant vectors (DVs) to plot. This is limited by the number
of DVs outputted from the ASDA function or k-1 DVs where k is the number of
classes. The first 1 to numDVs are plotted.

xlabel Label to put under every plot

ylabel Vector of y-axis labels for each plot, e.g. if there are three DVs, then ylab =
c('Discriminant Vector 1', 'Discriminant Vector 2', 'Discriminant Vector
3') is a valid option.

getList Logical value indicating whether the output should be a list of the plots or the
plots stacked in one plot using the gridExtra package. By default the function
produces a single plot combining all plots of the DVs.

main Main title for the plots, this is not used if getList is set to TRUE.

... Extra arguments to grid.arrange.

Value

barplot.ASDA returns either a single combined plot or a list of individual ggplot objects.
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Note

This function is used as a quick diagnostics tool for the output from the ASDA function. Feel free
to look at the code to customize the plots in any way you like.

See Also

ASDA

Examples

# Generate and ASDA object with your data, e.g.
# Prepare training and test set
# This is a very small data set, I advise you to try it on something with more

# variables, e.g. something from this source: http://www.cs.ucr.edu/~eamonn/time_series_data/
# or possibly run this on the Gaussian data example from the ASDA function
train <- c(1:40,51:90,101:140)
Xtrain <- iris[train,1:4]
nX <- normalize(Xtrain)
Xtrain <- nX$Xc
Ytrain <- iris[train,5]
Xtest <- iris[-train,1:4]
Xtest <- normalizetest(Xtest,nX)
Ytest <- iris[-train,5]
# Run the method
resIris <- ASDA(Xtrain,Ytrain)

# Look at the barplots of the DVs
ASDABarPlot(resIris)

genDat Generate data for ordinal examples in the package

Description

Given the parameters, the function creates a dataset for testing the ordinal functionality of the pack-
age. The data is samples from multivariate Gaussians with different means, where the mean varies
along a sinusoidal curve w.r.t. the class label.

Usage

genDat(numClasses, numObsPerClass, mu, sigma)

Arguments

numClasses Positive integer specifying the number of classes for the dataset.

numObsPerClass Number of observations sampled per class.

mu Mean of the first class.

sigma 2 by 2 covariance matrix
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Details

This function is used to demonstrate the usage of the ordinal classifier.

Value

genDat Returns a list with the following attributes:

X A matrix with two columns and numObsPerClass*numClasses rows.

Y Labels for the rows of X.

Author(s)

Gudmundur Einarsson

See Also

ordASDA

Examples

set.seed(123)

# You can play around with these values to generate some 2D data to test one
numClasses <- 15
sigma <- matrix(c(1,-0.2,-0.2,1),2,2)
mu <- c(0,0)
numObsPerClass <- 5

# Generate the data, can access with train$X and train$Y
train <- accSDA::genDat(numClasses,numObsPerClass,mu,sigma)
test <- accSDA::genDat(numClasses,numObsPerClass*2,mu,sigma)

# Visualize it, only using the first variable gives very good separation
plot(train$X[,1],train$X[,2],col = factor(train$Y),asp=1,main="Training Data")

normalize Normalize training data

Description

Normalize a vector or matrix to zero mean and unit length columns.

Usage

normalize(X)
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Arguments

X a matrix with the training data with observations down the rows and variables in
the columns.

Details

This function can e.g. be used for the training data in the ASDA function.

Value

normalize Returns a list with the following attributes:

Xc The normalized data

mx Mean of columns of X.

vx Length of columns of X.

Id Logical vector indicating which variables are included in X. If some of the columns have zero
length they are omitted

Author(s)

Line Clemmensen

References

Clemmensen, L., Hastie, T. and Ersboell, K. (2008) "Sparse discriminant analysis", Technical re-
port, IMM, Technical University of Denmark

See Also

normalizetest, predict.ASDA, ASDA

Examples

## Data
X<-matrix(sample(seq(3),12,replace=TRUE),nrow=3)

## Normalize data
Nm<-normalize(X)
print(Nm$Xc)

## See if any variables have been removed
which(!Nm$Id)
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normalizetest Normalize training data

Description

Normalize test data using output from the normalize() of the training data

Usage

normalizetest(Xtst, Xn)

Arguments

Xtst a matrix with the test data with observations down the rows and variables in the
columns.

Xn List with the output from normalize(Xtr) of the training data.

Details

This function can e.g. be used for the test data in the predict.ASDA function.

Value

normalizetest returns the normalized test data Xtst

Author(s)

Line Clemmensen

References

Clemmensen, L., Hastie, T. and Ersboell, K. (2008) "Sparse discriminant analysis", Technical re-
port, IMM, Technical University of Denmark

See Also

normalize, predict.ASDA, ASDA

Examples

## Data
Xtr<-matrix(sample(seq(3),12,replace=TRUE),nrow=3)
Xtst<-matrix(sample(seq(3),12,replace=TRUE),nrow=3)

## Normalize training data
Nm<-normalize(Xtr)

## Normalize test data
Xtst<-normalizetest(Xtst,Nm)
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ordASDA Ordinal Accelerated Sparse Discriminant Analysis

Description

Applies accelerated proximal gradient algorithm to the optimal scoring formulation of sparse dis-
criminant analysis proposed by Clemmensen et al. 2011. The problem is further casted to a binary
classification problem as described in "Learning to Classify Ordinal Data: The Data Replication
Method" by Cardoso and da Costa to handle the ordinal labels. This function serves as a wrapper
for the ASDA function, where the appropriate data augmentation is performed. Since the problem is
casted into a binary classication problem, only a single discriminant vector comes from the result.
The first *p* entries correspond to the variables/coefficients for the predictors, while the following
K-1 entries correspond to biases for the found hyperplane, to separate the classes. The resulting
object is of class ordASDA and has an accompanying predict function. The paper by Cardoso and
dat Costa can be found here: (http://www.jmlr.org/papers/volume8/cardoso07a/cardoso07a.pdf).

Usage

ordASDA(Xt, ...)

## Default S3 method:
ordASDA(
Xt,
Yt,
s = 1,
Om,
gam = 0.001,
lam = 1e-06,
method = "SDAAP",
control,
...

)

Arguments

Xt n by p data matrix, (can also be a data.frame that can be coerced to a matrix)

... Additional arguments for ASDA and lda function in package MASS.

Yt vector of length n, equal to the number of samples. The classes should be
1,2,...,K where K is the number of classes. Yt needs to be a numeric vector.

s We need to find a hyperplane that separates all classes with different biases. For
each new bias we define a binary classification problem, where a maximum of
s ordinal classes or contained in each of the two classes. A higher value of s
means that more data will be copied in the data augmentation step. BY default
s is 1.

Om p by p parameter matrix Omega in generalized elastic net penalty, where p is the
number of variables.
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gam Regularization parameter for elastic net penalty, must be greater than zero.

lam Regularization parameter for l1 penalty, must be greater than zero.

method String to select method, now either SDAD or SDAAP, see ?ASDA for more info.

control List of control arguments further passed to ASDA. See ASDA.

Value

ordASDA returns an object of class "ordASDA" including a list with the same components as an
ASDA objects and:

h Scalar value for biases.

K Number of classes.

NULL

Note

Remember to normalize the data.

See Also

ASDA.

Examples

set.seed(123)

# You can play around with these values to generate some 2D data to test one
numClasses <- 5
sigma <- matrix(c(1,-0.2,-0.2,1),2,2)
mu <- c(0,0)
numObsPerClass <- 5

# Generate the data, can access with train$X and train$Y
train <- accSDA::genDat(numClasses,numObsPerClass,mu,sigma)
test <- accSDA::genDat(numClasses,numObsPerClass*2,mu,sigma)

# Visualize it, only using the first variable gives very good separation
plot(train$X[,1],train$X[,2],col = factor(train$Y),asp=1,main="Training Data")

# Train the ordinal based model
res <- accSDA::ordASDA(train$X,train$Y,s=2,h=1, gam=1e-6, lam=1e-3)
vals <- predict(object = res,newdata = test$X) # Takes a while to run ~ 10 seconds
sum(vals==test$Y)/length(vals) # Get accuracy on test set
#plot(test$X[,1],test$X[,2],col = factor(test$Y),asp=1,
# main="Test Data with correct labels")
#plot(test$X[,1],test$X[,2],col = factor(vals),asp=1,
# main="Test Data with predictions from ordinal classifier")



14 predict.ASDA

predict.ASDA Predict method for sparse discriminant analysis

Description

Predicted values based on fit from the function ASDA. This function is used to classify new observa-
tions based on their explanatory variables/features.

Usage

## S3 method for class 'ASDA'
predict(object, newdata = NULL, ...)

Arguments

object Object of class ASDA. This object is returned from the function ASDA.

newdata A matrix of new observations to classify.

... Arguments passed to predict.lda.

Value

A list with components:

class The classification (a factor)

posterior posterior probabilities for the classes

x the scores

Note

The input matrix newdata should be normalized w.r.t. the normalization of the training data

See Also

SDAAP, SDAP and SDAD

Examples

# Prepare training and test set
train <- c(1:40,51:90,101:140)
Xtrain <- iris[train,1:4]
nX <- normalize(Xtrain)
Xtrain <- nX$Xc
Ytrain <- iris[train,5]
Xtest <- iris[-train,1:4]
Xtest <- normalizetest(Xtest,nX)
Ytest <- iris[-train,5]

# Define parameters for SDAD
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Om <- diag(4)+0.1*matrix(1,4,4) #elNet coef mat
gam <- 0.01
lam <- 0.01
method <- "SDAD"
q <- 2
control <- list(PGsteps = 100,

PGtol = c(1e-5,1e-5),
mu = 1,
maxits = 100,
tol = 1e-3,
quiet = FALSE)

# Run the algorithm
res <- ASDA(Xt = Xtrain,

Yt = Ytrain,
Om = Om,
gam = gam ,
lam = lam,
q = q,
method = method,
control = control)

# Do the predictions on the test set
preds <- predict(object = res, newdata = Xtest)

predict.ordASDA Predict method for ordinal sparse discriminant analysis

Description

Predicted values based on fit from the function ordASDA. This function is used to classify new
observations based on their explanatory variables/features. There is no need to normalize the data,
the data is normalized based on the normalization data from the ordASDA object.

Usage

## S3 method for class 'ordASDA'
predict(object, newdata = NULL, ...)

Arguments

object Object of class ordASDA. This object is returned from the function ordASDA.

newdata A matrix of new observations to classify.

... Arguments passed to predict.lda.

Value

A vector of predictions.
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See Also

ordASDA

Examples

set.seed(123)

# You can play around with these values to generate some 2D data to test one
numClasses <- 5
sigma <- matrix(c(1,-0.2,-0.2,1),2,2)
mu <- c(0,0)
numObsPerClass <- 5

# Generate the data, can access with train$X and train$Y
train <- accSDA::genDat(numClasses,numObsPerClass,mu,sigma)
test <- accSDA::genDat(numClasses,numObsPerClass*2,mu,sigma)

# Visualize it, only using the first variable gives very good separation
plot(train$X[,1],train$X[,2],col = factor(train$Y),asp=1,main="Training Data")

# Train the ordinal based model
res <- accSDA::ordASDA(train$X,train$Y,s=2,h=1, gam=1e-6, lam=1e-3)
vals <- predict(object = res,newdata = test$X) # Takes a while to run ~ 10 seconds
sum(vals==test$Y)/length(vals) # Get accuracy on test set
#plot(test$X[,1],test$X[,2],col = factor(test$Y),asp=1,
# main="Test Data with correct labels")
#plot(test$X[,1],test$X[,2],col = factor(vals),asp=1,
# main="Test Data with predictions from ordinal classifier")

print.ASDA Print method for ASDA object

Description

Prints a summary of the output from the ASDA function. The output summarizes the discriminant
analysis in human readable format.

Usage

## S3 method for class 'ASDA'
print(x, digits = max(3, getOption("digits") - 3), numshow = 5, ...)

Arguments

x Object of class ASDA. This object is returned from the function ASDA.

digits Number of digits to show in printed numbers.

numshow Number of best ranked variables w.r.t. to their absolute coefficients.

... arguments passed to or from other methods.
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Value

An invisible copy of x.

See Also

ASDA, predict.ASDA and SDAD

Examples

# Prepare training and test set
train <- c(1:40,51:90,101:140)
Xtrain <- iris[train,1:4]
nX <- normalize(Xtrain)
Xtrain <- nX$Xc
Ytrain <- iris[train,5]
Xtest <- iris[-train,1:4]
Xtest <- normalizetest(Xtest,nX)
Ytest <- iris[-train,5]

# Run the algorithm
resDef <- ASDA(Xtrain,Ytrain)

# Print
print(resDef)

SZVD Sparse Zero Variance Discriminant Analysis

Description

Applies SZVD heuristic for sparse zero-variance discriminant analysis to given training set.

Usage

SZVD(train, ...)

## Default S3 method:
SZVD(

train,
gamma,
D,
penalty = TRUE,
scaling = TRUE,
tol = list(abs = 1e-04, rel = 1e-04),
maxits = 2000,
beta = 1,
quiet = TRUE,
...

)
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Arguments

train Data matrix where first column is the response class.

... Parameters passed to SZVD.default.

gamma Set of regularization parameters controlling l1-penalty.

D dictionary/basis matrix.

penalty Controls whether to apply reweighting of l1-penalty (using sigma = within-class
std devs).

scaling Logical indicating whether to scale data such that each feature has variance 1.

tol Stopping tolerances for ADMM algorithm, must include tol$rel and tol$abs.

maxits Maximum number of iterations used in the ADMM algorithm.

beta penalty term controlling the splitting constraint.

quiet Print intermediate outpur or not.

Details

This function will currently solve as a standalone function in accSDA for time comparison. A
wrapper function like ASDA will be created to use the functionality of plots and such. Maybe call
it ASZDA. For that purpose the individual ZVD function will need to be implemented.

Value

SZVD returns an object of class "SZVD" including a list with the following named components:

DVs Discriminant vectors.

its Number of iterations required to find DVs.

pen_scal Weights used in reweighted l1-penalty.

N Basis for the null-space of the sample within-class covariance.

means Training class-means.

mus Training meand and variance scaling/centering terms.

w0 unpenalized zero-variance discriminants (initial solutions) plus B and W, etc.

NULL

See Also

Used by: SZVDcv.

Examples

set.seed(123)
P <- 300 # Number of variables
N <- 50 # Number of samples per class

# Mean for classes, they are zero everywhere except the first 3 coordinates
m1 <- rep(0,P)
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m1[1] <- 3

m2 <- rep(0,P)
m2[2] <- 3

m3 <- rep(0,P)
m3[3] <- 3

# Sample dummy data
Xtrain <- rbind(MASS::mvrnorm(n=N,mu = m1, Sigma = diag(P)),

MASS::mvrnorm(n=N,mu = m2, Sigma = diag(P)),
MASS::mvrnorm(n=N,mu = m3, Sigma = diag(P)))

# Generate the labels
Ytrain <- rep(1:3,each=N)

# Normalize the data
Xt <- accSDA::normalize(Xtrain)
Xtrain <- Xt$Xc

# Train the classifier and increase the sparsity parameter from the default
# so we penalize more for non-sparse solutions.
res <- accSDA::SZVD(cbind(Ytrain,Xtrain),beta=2.5,

maxits=1000,tol = list(abs = 1e-04, rel = 1e-04))

SZVDcv Cross-validation of sparse zero variance discriminant analysis

Description

Applies alternating direction methods of multipliers to solve sparse zero variance discriminant anal-
ysis.

Usage

SZVDcv(Atrain, ...)

## Default S3 method:
SZVDcv(

Atrain,
Aval,
k,
num_gammas,
g_mults,
D,
sparsity_pen,
scaling,
penalty,
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beta,
tol,
ztol,
maxits,
quiet,
...

)

Arguments

Atrain Training data set.

... Parameters passed to SZVD.default.

Aval Validation set.

k Number of classes within training and validation sets.

num_gammas Number of gammas to train on.

g_mults Parameters defining range of gammas to train, g_max*(c_min, c_max). Note
that it is an array/vector with two elements.

D Penalty dictionary basis matrix.

sparsity_pen weight defining validation criteria as weighted sum of misclassification error
and cardinality of discriminant vectors.

scaling Whether to rescale data so each feature has variance 1.

penalty Controls whether to apply reweighting of l1-penalty (using sigma = within-class
std devs)

beta Parameter for augmented Lagrangian term in the ADMM algorithm.

tol Stopping tolerances for the ADMM algorithm, must have tol$rel and tol$abs.

ztol Threshold for truncating values in DVs to zero.

maxits Maximum number of iterations used in the ADMM algorithm.

quiet Controls display of intermediate results.

Details

This function might require a wrapper similar to ASDA.

Value

SZVDcv returns an object of class "SZVDcv" including a list with the following named components:

DVs Discriminant vectors for the best choice of gamma.

all_DVs Discriminant vectors for all choices of gamma.

l0_DVs Discriminant vectors for gamma minimizing cardinality.

mc_DVs Discriminant vector minimizing misclassification.

gamma Choice of gamma minimizing validation criterion.

gammas Set of all gammas trained on.
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max_g Maximum value of gamma guaranteed to yield a nontrivial solution.

ind Index of best gamma.

w0 unpenalized zero-variance discriminants (initial solutions) plus B and W, etc. from ZVD

NULL

See Also

Non CV version: SZVD.

Examples

P <- 300 # Number of variables
N <- 50 # Number of samples per class

# Mean for classes, they are zero everywhere except the first 3 coordinates
m1 <- rep(0,P)
m1[1] <- 3

m2 <- rep(0,P)
m2[2] <- 3

m3 <- rep(0,P)
m3[3] <- 3

# Sample dummy data
Xtrain <- rbind(MASS::mvrnorm(n=N,mu = m1, Sigma = diag(P)),

MASS::mvrnorm(n=N,mu = m2, Sigma = diag(P)),
MASS::mvrnorm(n=N,mu = m3, Sigma = diag(P)))

Xval <- rbind(MASS::mvrnorm(n=N,mu = m1, Sigma = diag(P)),
MASS::mvrnorm(n=N,mu = m2, Sigma = diag(P)),

MASS::mvrnorm(n=N,mu = m3, Sigma = diag(P)))

# Generate the labels
Ytrain <- rep(1:3,each=N)
Yval <- rep(1:3,each=N)

# Train the classifier and increase the sparsity parameter from the default
# so we penalize more for non-sparse solutions.

res <- accSDA::SZVDcv(cbind(Ytrain,Xtrain),cbind(Yval,Xval),num_gammas=4,
g_mults = c(0,1),beta=2.5,
D=diag(P), maxits=100,tol=list(abs=1e-3,rel=1e-3), k = 3,

ztol=1e-4,sparsity_pen=0.3,quiet=FALSE,penalty=TRUE,scaling=TRUE)
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SZVD_kFold_cv Cross-validation of sparse zero variance discriminant analysis

Description

Applies alternating direction methods of multipliers to solve sparse zero variance discriminant anal-
ysis.

Usage

SZVD_kFold_cv(X, ...)

## Default S3 method:
SZVD_kFold_cv(

X,
Y,
folds,
gams,
beta,
D,
q,
maxits,
tol,
ztol,
feat,
penalty,
quiet,
...

)

Arguments

X n by p data matrix, variables should be scaled to by sd

... Parameters passed to SZVD.default.

Y n by K indicator matrix.

folds number of folds to use in K-fold cross-validation.

gams Number of regularly spaced regularization parameters to try in [0,1]*max_gamma.
See details for how max_gamma is computed in the function.

beta Augmented Lagrangian parameter. Must be greater than zero.

D Penalty dictionary basis matrix.

q Desired number of discriminant vectors.

maxits Number of iterations to run ADMM algorithm.

tol Stopping tolerances for ADMM, must have tol$rel and tol$abs.

ztol Rounding tolerance for truncating entries to 0.



SZVD_kFold_cv 23

feat Maximum fraction of nonzero features desired in validation scheme.

penalty Controls whether to apply reweighting of l1-penalty (using sigma = within-class
std devs)

quiet toggles between displaying intermediate statistics.

Details

Add how max_gamma is calculated from the ZVD solution. This function might require a wrapper
similar to ASDA.

Value

SZVDcv returns an object of class "SZVDcv" including a list with the named components DVs and
gambest. Where DVs are the discriminant vectors for the best l1 regularization parameter and
gambest is the best regularization parameter found in the cross-validation.

NULL

See Also

Used by: SZVDcv.

Examples

P <- 150 # Number of variables
N <- 20 # Number of samples per class

# Mean for classes, they are zero everywhere except the first 3 coordinates
m1 <- rep(0,P)
m1[1] <- 3

m2 <- rep(0,P)
m2[2] <- 3

m3 <- rep(0,P)
m3[3] <- 3

# Sample dummy data
Xtrain <- rbind(MASS::mvrnorm(n=N,mu = m1, Sigma = diag(P)),

MASS::mvrnorm(n=N,mu = m2, Sigma = diag(P)),
MASS::mvrnorm(n=N,mu = m3, Sigma = diag(P)))

# Generate the labels
Ytrain <- cbind(c(rep(1,N),rep(0,2*N)),

c(rep(0,N),rep(1,N),rep(0,N)),
c(rep(0,2*N),rep(1,N)))

# Normalize the data
Xt <- accSDA::normalize(Xtrain)
Xtrain <- Xt$Xc
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# Train the classifier and increase the sparsity parameter from the default
# so we penalize more for non-sparse solutions.
res <- accSDA::SZVD_kFold_cv(Xtrain,Ytrain,folds=2,gams=2,beta=2.5,q=1, D=diag(P),

maxits=50,tol=list(abs=1e-2,rel=1e-2),
ztol=1e-3,feat=0.3,quiet=FALSE,penalty=TRUE)

ZVD Zero Variance Discriminant Analysis

Description

Implements the ZVD algorithm to solve dicriminant vectors.

Usage

ZVD(A, ...)

## Default S3 method:
ZVD(A, scaling = FALSE, get_DVs = FALSE, ...)

Arguments

A Matrix, where first column corresponds to class labels.
... Parameters passed to ZVD.default.
scaling Logical whether to rescale data so each feature has variance 1.
get_DVs Logical whether to obtain unpenalized zero-variance discriminant vectors.

Details

This function should potentially be made internal for the release.

Value

SZVDcv returns an object of class "ZVD" including a list with the following named components:

dvs discriminant vectors (optional).
B sample between-class covariance.
W sample within-class covariance.
N basis for the null space of the sample within-class covariance.
mu training mean and variance scaling/centering terms
means vectors of sample class-means.
k number of classes in given data set.
labels list of classes.
obs matrix of data observations.
class_obs Matrices of observations of each class.

NULL
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See Also

Used by: SZVDcv.

Examples

# Generate Gaussian data on three classes with bunch of redundant variables

P <- 300 # Number of variables
N <- 50 # Number of samples per class

# Mean for classes, they are zero everywhere except the first 3 coordinates
m1 <- rep(0,P)
m1[1] <- 3

m2 <- rep(0,P)
m2[2] <- 3

m3 <- rep(0,P)
m3[3] <- 3

# Sample dummy data
Xtrain <- rbind(MASS::mvrnorm(n=N,mu = m1, Sigma = diag(P)),

MASS::mvrnorm(n=N,mu = m2, Sigma = diag(P)),
MASS::mvrnorm(n=N,mu = m3, Sigma = diag(P)))

# Generate the labels
Ytrain <- rep(1:3,each=N)

# Normalize the data
Xt <- accSDA::normalize(Xtrain)
Xtrain <- Xt$Xc

# Train the classifier and increase the sparsity parameter from the default
# so we penalize more for non-sparse solutions.
res <- accSDA::ZVD(cbind(Ytrain,Xtrain))
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